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MASS TRANSFER IN FILTRATION PROCESSES OF 
WATERS CONTAINING CORROSIVE COMPONENTS 

M. G. Khramchenkov UDC 532.546 

A mathematical  model  of  mass  transfer for dissolution processes involving the filtration of  waters containing 

corrosive components  is suggested. The model  is extended to karst formation. 

The chemical composition of underground waters reflecting the equilibrium in a water-rock system may 

change due to different factors disturbing this equilibrium. We consider the case where this change is caused by 

corrosive components of underground waters (C02, 02, H2, S04, etc.), leading to dissolution of the substance of 

the rock. Such problems emerge in investigations of the formation of the chemical composition of underground 

waters, migration of contaminants in underground waters, processes of karst formation, mining of minerals by the 

underground leaching technique. 

If a heterogeneous chemical reaction between a corrosive component and a rock substance proceeds at a 

sufficiently high rate, the main limiting factor of the reaction is the supply of the reagent to the reaction surface 

and the removal of the reaction product. For a steady-state reaction, the known stoichiometry ratio of the diffusional 

flows of a reaction product and a reagent [1 ] may be used: 

J1/V 1 -- ]2/v2.  (1) 

Here Jl and Jz are the flows of a corrosive component to the reaction surface and a product from the reaction surface 

expressed in terms of the molar contents; v I and v 2 are the corresponding stoichiometric coefficients. Ratio (1) is 

equivalent to the well-known expression for the rate of change of the degree of completeness of the reaction at the 

interface. 

The transfer equation for a corrosive component is 

O_ (toO) + vVO = V (DomVO) - Jl �9 
Ot 

(2) 

The transfer equation for a reaction product is 

0 (mc) + vVc = V (DcmVc) + J2" 
Ot 

(3) 

It is noteworthy that  the product and corrosive component concentrations are the molar contents of the 

corresponding substances. 

Since the convective diffusion coefficient D c depends mainly on the porous medium structure and the 

filtration rate [2 ], we assume that DO = Dc = D. 

Dividing Eq. (2) by vl and Eq. (3) by v2 and adding the results we arrive at 

O (ms) + vVs = V (DmVs)  
Ot 

(4) 

Here we have introduced s = 0 + VlC/V 2. 
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The concentration s specifies the content of a corrosive component in both the free state and the state 

bound, through the reaction product. Equation (4) does not contain any sources (sinks), and thus s is an important 

characteristic of the process. 

The discharge of a reaction product into a solution may be described by choosing the following expression 

for ]2: 

J2 = ~  (Co (0) - c ) ,  (s) 

where co is the equilibrium (limiting) concentration of the reaction product. The limiting concentration is related 

to the content of a corrosive component and is determined by an equilibrium constant [3 ]. For a reaction of the 

type VAA + VBB = v c C  we have 

K _ 
[ c  I vC (6) 

[A]VA [B]VB ' 

where square brackets designate by tradition the concentrations of the reaction product C and the reagents A and 

B. If the concentration of the leached substance in the solid phase does not change, then the relationship between 

0 and co has the form of a power function: 

0 = (KlcO)n; K 1 , n = const. (7) 

An expression for the flux Jl follows from (1), (5), and (7): 

- Jl = f l  ( s  - 0 - v l O  1/n ( 1 / g l ) / v 2 ) .  (8) 

Characteristic features of the mass transfer may be revealed from an analysis of the simplest case, namely, 

the one-dimensional problem in the nondiffusional approximation. The system of equations 

v O O / o x  = - Jl  , (9) 

(9) vOc/Ox =J2 (10) 

obtained from (2) and (3) generates a solution that is the stationary stage of the general solution of system of 

equations (2), (3) in the nondiffusional approximation. Since in this case s -- const -- s(0), we easily integrate Eq. 

(9): 

0 
f du = - x f l / v ,  (11) 

0(0) r iCo/v2 + u - s 

and determine c from the relation 0 + VlC/V 2 = s. 

The suggested scheme for solving problems on mass transfer involving filtration of waters containing 

corrosive elements differs from the conventional one [4 ], above all, in the fact that it employs explicitly relation 
(1) and the property that it imparts to the function s(x,  t), which, as a rule, is known (in the nondiffusional 

approximation s -- const). 
As an example, we consider carbon dioxide leaching of carbonate rocks (carbonate karst). In this case, 0 

and co are related by the Auerbach formula [5 ]: 

o = (Co/17) 3 , (12) 

and the stationary distribution of concentrations over the depth is 
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f i x / v  = - 3 In 
O1/3 - A -  B ] + 

01"3. (0) - A - B 

+ 31/3 (A + B) (2A 2 + 3AB + 2B 2) arctan 2w + A + B 01/3 + 

2 ]A - B [ (A z + AB +B 2) 31'3 [A - B [ 01,'3(0) 

01/3 

+ 2A 2 + AB + B 2 (w + 1) 2 ] (13) 
In w2 A2 B2 [ , 2 (A 2 + AB + B 2) + (A + B) w + - AB + 0t/3(0) 

0 ( x ) + c ( x ) = s ,  s = c o n s t ,  

where A = (Q1/Z + s/2)l /a,  B = _(Q1/2 _ s/2)1/3, Q = (17/3)a + (s/2)2. 

Solution (13) is obtained under  the assumption that the source of corrosive carbon dioxide in underground 

waters is biochemical processes occurring both in the water and in the soils with which the water is in contact. The 

content of the carbon dioxide entering from the atmosphere does not exceed 0.6 rag/liter because of a low partial 

pressure, while in order to provide mean HCO3- concentrations in natural waters (200-250 ml/g) ,  CO2 must attain 

approximately 10-12  mg/li ter ,  and therefore the amount of atmospheric CO2 penetrating into underground waters 

may be neglected. 

Karst formation has long been an object of mathematical modeling. The pioneering karst model is that of 

N. N. Verigin [7 ]. Unlike the model suggested in the present work, it does not take into account the C()2 consumed 

in the interphase reaction, i.e., in the Verigin model co = const. For zero concentration of the dissolution product 

at the inlet (x = 0) the stationary concentration distribution is 

c = c o (1 - exp ( -  f ix~v)).  

Just in our model, for the rate of crack opening J~ the following relation is fulfilled: 

= fi (% - c) .  

(14) 

(15) 

We may compare both models because they are parametrically identical. Results of their comparison are 

shown in Fig. 1. Estimates were made for 0(0) = 0.01 mole/li ter (10 mmole/li ter),  a rate of limestone dissolution 

of the order of 10 -7 m/sec,  a filtration rate of about 10 -5 m/sec (1 m/day) ,  and a specific surface of cracks of 

the order of 10 z m -1 [6]. The curves te and c correspond to the contents of free carbon dioxide and calcium 

hydrocarbonate, respectively, calculated by our model. The curve f2 corresponds to the concentration distribution 

according to the Verigin model with co = 17(s)1/3. A comparison of the rates of karst development ph/ f l  (the curves 

f l  and f3) showed that the Verigin model (the curve f3) yields a more rapid karst attenuation (smaller mixing zones) 

than ours. 

Another example is Lekhov's model of karst formation [8-10  ]. As a basis, this model employs the model 

of a crack as a slit with parallel smooth walls. The equation of mass balance for the internal space of a crack is [8 ] 

DmO2C/Oy 2 = 1.5u w (1 - (y/b) 2) Oc/Ox , (16) 

where Dm is the diffusion coefficient; c is the concentration of the components of the dissolved rock; u w is the mean 

velocity of underground water; x is the coordinate running along the middle of the slit in the flow direction; y is 

the coordinate perpendicular to the slit walls. 
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Fig. 1. Curves illustrating the content of carbon dioxide (curve te) and calcium 

hydrocarbonate (curves c and ]'2) in the solution and the reduced rate of 

opening of cracks (curves fl and fa). c, mmole/liter; x, m. 

The boundary conditions are the concentration distribution at the crack inlet, the symmetry condition of 

the problem, and the equation of equality of the rate of appearance of the dissolved rock due to the reaction to the 
rate of its removal by diffusion: 

c (0, y) = c 1 , (17) 

Oc (x, O)/Oy = O, (18) 

DmOC (x, b)/cgy = - k e (c m - -  c )  r . 
(19) 

Here (in the author's notation) cm is the equilibrium concentration of the dissolved rock; k e is the dissolution rate 

ratio; r is the formal order of the reaction; b is the crack opening, equal to half the distance between its walls [9 ]. 

The main drawback of model (16)-(19), in our opinion, is use of the boundary condition in form (19). 

Indeed, it is easy to show that for any x, generally speaking, c(x ,  b) > c(x ,  y) ,  i.e., the concentration distribution 

over the crack width has the form of a concave curve. At some time (or at some distance x0 from the crack inlet) 

the concentration at the boundary may attain its equilibrium value, i.e., c(xo,  b) = Cm. In this case, as is known 

[1 ], the diffusion stage of the dissolution process will operate. But the Lekhov model leads to a contradiction in 

this case since the r.h.s, of (19) is strictly equal to zero, while the 1.h.s. is not equal to zero. The sole possibility 

of considering c (x ,  y) = c m at x > x 0 and 0 < y < b is too strong an assumption. Thus, the choice of boundary 

condition (19) excludes the diffusion stage of the dissolution process in the Lekhov model. Since precisely the 

diffusion stage of dissolution is described by our model (i.e., it is assumed that thermodynamic equilibrium is 

instantaneously established over the interphase surface of a physical volume element) but the Lekhov model 

excludes this stage, we have not compared these models. 

The author thanks A. V. Kosterin, A. G. Egorov, and A. N. Nikolaev for helpful discussion and help in 

preparation of the work. 

N O T A T I O N  

Jl and .i2, flows of the aggressive component of underground waters and the reaction product expressed in 

terms of molar contents; vl and v2, stoichiometric coefficients of the aggressive component and the reaction product; 
t, time; x, y, Coordinates; m, porosity; v, filtration rate; 0, molar concentration of the aggressive component; ,c, 

molar concentration of the reaction product; DO, Dc, D,  coefficients of convective diffusion; s, concentration of the 

aggressive component in the free state and the state bound through the reaction product;/3, mass transfer constant; 
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co, rock solubility; K, chemical equilibrium constant; p, density of the soluble rock; V, gradient operator; Din, 
molecular diffusion coefficient; Uw, mean velocity of the flow of the underground water in the crack; hi= b), opening 

of the crack (half the distance between its walls); ke, dissolution rate ratio; Cm, equilibrium concentration of the 
dissolved rock (in the Lekhov model of karst). 
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